

版本记录

版本	描述	日期
1.0	首版发布	2023/4/27
1.1	修改第二篇中的"Stepper resolution"描述	2023/7/27
2.0	更新整体排版格式,增加部分内容	2023/11/6
2.1	更新闭环步进调参步骤	2024/1/19

※本公司保留不定期更新的权利,根据产品硬件及软件的升级或更新迭代以及市场需 求,本手册将会不定期进行内容上的更新调整,恕不另行告知,如需最新版本文档, 请联系 Agito-Akribis 公司获取相应支持。

目录

1	介绍	J	4
	1.1	关于手册	4
	1.2	Agito 控制器控制步进简介	4
2	操作	=步骤	5
	2.1	PD 控制(脉冲方向)	5
	2.2	直驱开环步进	9
	2.3	直驱闭环步进	12
	2.4	特殊 PD 模式	15
3	相关	关键字介绍	19

1 介绍

1.1 关于手册

感谢您选择 Agito 系列运动控制产品,我们将竭力为您提供追求速度与精度的极致运动控制方案,并提供全方位的技术支持。

本手册主要介绍 Agito 控制器搭配步进电机使用方法,手册中仅详细介绍与步进电机相关的配置内容,其他参数设置或功能可参阅《Agito 快速入门手册》及其他相关功能手册中的详细介绍,本文档将不再赘述。

1.2 Agito 控制器控制步进简介

步进电机由于成本低、控制简单,在自动化系统中应用广泛。Agito 控制器支持常用的脉冲方向(PD)方式控制步进驱动器驱动步进电机运动,同时也支持直接驱动步进电机运动(纯控制器需搭配驱动器使用),用户根据系统应用需求选择对应的控制方式。

2 操作步骤

不同的控制方式系统接线将会有区别,用户根据应用需求选择相应的硬件及接线。

2.1 PD 控制(脉冲方向)

PD 模式为目前最常用的步进电机控制方式,该模式需要外接第三方步进驱动器支持,但 此方式步进电机选型灵活,可根据步进驱动器支持的电机类型以及输出扭力自由选择用户所需 的电机型号。

值得注意的是: PD 控制模式需要占用控制器运动轴,尽管该轴主编码器和动力接口未接 任何实际电机,而是使用虚拟控制轴,该轴不能再连接其他电机同时使用,在 CNC 或齿轮等模 式下可实现多轴协调运动。

以下将详述使用 Agito 控制器控制步进电机的步骤:

• 第1步: 电气接线

(以下以 AGD301 作为示例,其他可参考)

控制器差分口输出为±2.5V 差分脉冲方向信号,如用户端步进驱动器是单端 0/5V 单端数 字信号有效,则需要使用定制线束以适配单端信号的使用。

◆ 标准±2.5V 差分信号:

• 单端 0/5V 数字信号

- 注:如需使用定制线束请联系 Agito-Akribis 获取相关支持
- 第2步:参数配置
 - ◆ 控制模式

	FDBK MOVE	POS PO	N DIG	ANA VENC	COMM
CONFIG	3 1 1 0	NOTON	2	FEEDBACK 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PROGRAM

打开 PCSuite, 切换菜单栏到 CONFIG ---> Basic Configration 界面:

Operation mode: 选择"3-Position control",

Amplifier type: 选择"3-Pulse/Direction command to amplifier";

System				
Operation mode:	3 - Position control v			
The controller supports multiple methods for on-the-fly mode switching. Please refer to the most updated User's Manual.				
Amplifier type: 3 - Pulse/Direction command to amplit ~				
Power supply:	0 - Built In PWM amplifier (DRV product)			
	1 - Reserved. Do not use			
Dynamic brake	2 - Analog (Current) command to amplifier			
	3 - Pulse/Direction command to amplifier			
	4 - Built In Linear amplifier			
	5 - Analog (Velocity) command to amplifier			

电机参数

Type: 电机类型选择 "6-Stepper in open loop";

Stepper resolution: 细分位数,如设值为 7bits,表示 6,400counts/Rev,即电机转动一 圈走 6,400 步(2^7bits*50poles=6,400),最大可设置为 16bits;

(注:步进细分数=2^{StepBits} * PolePrs)

值得注意的是:此处的细分数并不影响电机的实际运动,但只有当该处的细分数和步进驱动器细分设置一致时(注:通常步进驱动器的细分通过拨码开关设置),控制器和电机的运行周期才能同步;

Motor Parameters 🗌 Show Setup Wizard					
Туре:	6 - Stepper in open loop 🗸 🗸				
Number of pole pairs:	50]			
Stepper currents: in-motion:	800 mA in-position: 50	mA			
Stepper resolution:	7	bits			

切换菜单栏到 I/O --->Discrete Outputs 界面(以下以 AGD301 为示例):

将对应双向差分数字输出设置为 Output 模式, 然后根据输出轴选择对应的输出模式 为 "13- [Axis] Enc.emul,line A 或 B",

Outputs:	1 - A Enc. emul., line A 🔥		
Logic:	2 - A event #1		
Mode:	3 - A event #2		
Applied on Axis:	4 - A event #3		
Colorton	5 - B event #1		
Selector:	6 - B event #2		
Sink/Source:	7 - B event #3 均生心体	挖制B轴先进	「次生」でオートンサ
HW Info:	8 - C event #1		行動し袖少近
	9 - C event #2		
Differential Bi-D	10 - C event #3		
Outputs:	11 - UserPWM 1	20 21	22 🎽 23
Logic:	12 - UserPWM 2		HW HW
Mode:	13 - A Enc. emul., line A al c	0 - General c \vee 0 - General c 🗸	0 - General c \vee 🛛 0 - General c 🕐
Applied on Axis:	Unknown	Not Applicable Not Applicable	Not Applicable Not Applicable
Selector:	13 - A Enc. e \vee 13 - A Enc. e 🗵	13 - B Enc. el 👻 13 - B Enc. el 👻	13 - C Enc. e \vee 13 - C Enc. e 👻
Direction:	1 - Output 🛛 🗸 – Output 🗠	1 - Output \vee 1 - Output 🗸	1 - Output 🗸 1 - Output 🗸
HW Info:	X4 pin 1,2 X4 pin 19,20	X4 pin 3,4 X4 pin 21,22	X4 pin 25,26 X4 pin 9,10

HW: This output pin is now used for dedicated hardware function (see Selector). The state of the output is not affected by DOutPort[].

被控驱动器	所双向差分口	方向	功能选项
A 轴驱动器	18(Bi-Dir_Diff_IO_1)	1-Output	13-A Enc.emul line A
	19(Bi-Dir_Diff_IO_2)	1-Output	13-A Enc.emul line B
B 轴驱动器	20(Bi-Dir_Diff_IO_3)	1-Output	13-B Enc.emul line A
	21(Bi-Dir_Diff_IO_4)	1-Output	13-B Enc.emul line B
C轴驱动器	22(Bi-Dir_Diff_IO_5)	1-Output	13-C Enc.emul line A
	23(Bi-Dir_Diff_IO_6)	1-Output	13-C Enc.emul line B

虚拟编码器设置

切换菜单栏到 CONFIG--->Virtual encoder 界面(以下以 AGD301 为示例)

切换到虚拟编码器配置界面,VEnc source 设置为"APosRef"(B、C轴依次类推), Output type 可以选择"O-Pulse/Direction"或者"1-A quad B"(根据用户步进驱动器 可接受的控制信号类型选择,见下页信号类型),然后将 Virtual encoder 选择为"1-Enable"开启虚拟编码器功能;

Virtual encoder					
Configuration	I				
Virtual encode	er: 1 - Enable	¥			
Axis: 0	Category:	Keyword:			
A ~	Position ~	PosRef ~			
VEnc src.:	APosRef				
Output type:	0 - Pulse/Direc	ti v			
Factor:	65,536	/ 65,536			
Delay:	0	micro-sec			

PD 信号输出类型(Output Type):

• 第3步:运动控制

完后以上设置后即可进行相应的运动控制;

2.2 直驱开环步进

Agito 大部分系列控制器支持直接驱动步进电机(AGD 系列和 AGA 系列,其中 AGA 系列需 要搭配 AGM800 控制器使用),当用户速度和精度要求不高的情况下可以使用该驱动方式。

• 第1步:系统框图

(以下以 AGD301 作为示例,其他可参考)

AGD301控制器

注意: 目前仅支持2相步进电机

- 第2步:参数配置
 - ◆ 控制器模式

打开 PCSuite, 切换菜单栏到 CONFIG ---> Basic Configration 界面:

Operation mode: 选择"3-Position control",

Amplifier type: 选择"0 - Built In PWM amplifier (DRV product)",

Power supply: 选择"2- Low DC";

System			
Operation mode:	3 - Position control	~	
The controller supports multiple methods for on-the-fly mode switching. Please refer to the most updated User's Manual.			
Amplifier type: 0 - Built In PWM amplifier (DRV produce		~	
Power supply:	2 - Low DC	~	

电机参数

Type: 电机类型, 选择 "6-Stepper in open loop";

Number of pole pairs: 电机极对数,根据步进电机手册来设置,典型步距角为 1.8°的 步进电机极对数为 50Pairs(注:步距角=360°/(2*N*P),其中 N 为极对数, P 为电机 相数);

Stepper currents: in-motion:表示电机运动时的电流,即额定电流,注意为了保护电机 请勿超过电机手册中额定电流值; in-position:表示电机空闲时的保持电流,常见设为 额定电流值的 90%、50%、30%,根据实际应用设置;

Stepper resolution: 细分位数,例如值设为 7bits,表示 6,400counts/Rev,即电机运动 一圈走 6,400 步(2^7bits*50poles=6,400),最大值为 16bits;

(注:步进细分数=2^{StepBits} * PolePrs)

Motor Parameters 🗌 Show Setup Wizard					
Туре:	6 - Stepper in open loop	1			
Number of pole pairs:	50				
Stepper currents: in-motion:	200 mA in-position: 50	mA			
Stepper resolution:	7	bits			

▶ 电机保护

切换菜单栏到 CONFIG ---> Protections 界面:

保护参数的详细设置请参阅《Agito 快速入门手册》中的内容介绍,此处仅介绍与开 环步进功能相关的设置。由于是开环控制未接入物理编码器,因此需将主、辅编码器 信息屏蔽;

Mask protections

Mask main encoder errors

Mask auxiliary encoder errors (if exist)

• 第3步: 电流环调参

为了保证电机具有良好的运动性能,需要对电流环进行调参;

切换菜单栏到 TUNE ---> Current Tuning 界面:

Motor resistance/Motor inductance: 电机电阻/电感,根据步进电机手册填入;

Current Pl, gain/Current Pl, integral: 填入电流环 PI 参数(推荐值从 100、10 开始以避免增益过大电机产生啸叫声),设定好参数后,点击 "Apply Current Command"开始注入电流,滚动鼠标滚轮并点击回车键可实时改变参数值并动态响应,调整参数的同时观察右侧图像中激励电流和响应电流(Ia/IaRef、Ib/IbRef),使其最大程度相吻合,点击 "Disable Current Command"可停止注入电流;

• 第4步:运动控制

完后以上设置后即可进行相应的运动控制;

2.3 直驱闭环步进

Agito 大部分系列控制器都支持直接驱动闭环步进电机(AGD 系列和 AGA 系列,其中 AGA 系列 需要搭配 AGM800 控制器使用),当用户速度和精度要求不高的情况下可以使用该驱动方式。

• 第1步:系统框图

(以下以 AGD301 作为示例,其他可参考)

• 场景 1: 步进电机+旋转编码器

◆ 场景 2: 步进电机+丝杆光栅

- 第2步:参数配置
 - ◆ 控制模式

打开 PCSuite, 切换菜单栏到 CONFIG ---> Basic Configration 界面:

Operation mode: 选择"3-Position control",

Amplifier type: 选择"0 - Built In PWM amplifier (DRV product)",

Power supply:选择"2-Low DC";

System			
Operation mode:	3 - Position control	~	
The controller supports multiple methods for on-the-fly mode switching. Please refer to the most updated User's Manual.			
Amplifier type:	0 - Built In PWM amplifier (DRV produc	~	
Power supply:	2 - Low DC	*	

• 电机参数

点击上一步"Apply and next"进入电机参数设置页面:

Type: 电机类型选择 "7-Stepper in closed loop";

Number of pole pairs: 步进电机极对数,根据步进电机手册设置,典型两相步距角为 1.8°步进电机的极对数为 50Pairs;

(注:步距角=360°/(2*N*P),其中 N 为极对数, P 为电机相数)

Stepper resolution: 闭环模式下 Stepper resolution 作为数字细分,其值越大电机运动 将会越平滑,最大为 16bits (注意: 在电流环调参时请将其值设为 2bits);

Туре:	7 - Stepper in closed loop	
Number of pole pairs:	50	
Stepper currents: in-motion:	800 mA in-position: 50	mA
Stepper resolution:	16	bits

编码器反馈

_ ...

编码器类型支持 ABI 增量式、EnDat 2.2 和 BISS-C 绝对式及 SinCos 模拟式,详细参数 设定请参阅《Agito 快速入门手册》文档中 2.1.2 章节中关于编码器部分的详细描述,此处仅简要介绍关于分辨率(Resolution)参数的设定,通常为以下 2 种使用场景:

步进电机+旋转编码器: Resolution=步进一圈对应的脉冲数

步进电机+丝杆光栅(直线或圆弧): Resolution=步进电机走一圈对应的线位移/光栅分辨率;

Dual loop						
Dual Loop mode:		0 - No dual loop 🛛 🗸		?		
Main encoder	Reading:	4,082		Last index:	3,301	
Туре:		1 - Increme	ntal v]		
		Please properly	configure max.	speed limitati	ion at Config/Pos	window
Sub Type:		0 - A quad	B encoder 👻]		
Resolution:		4,000] counts / ro	tation (or pitch)	?
Invert direction:		0 - No 🗸	Max. speed:	10 - 5,00	0,000 ~	?
Modulus range:		0		user-units		
Emulation divider val	ue:	0		Direction:	Normal v	
User units' factor:		65,536	/ 65536	counts/use	er-units	

◆ 电机保护

切换菜单栏到 CONFIG ---> Protections 界面:

保护参数的详细设置请参阅《Agito 快速入门手册》中的内容介绍;

• 第3步: PIV 调参

为了保证电机具有良好的运动性能,需要对运动控制参数进行调整;

◆ 电流环

切换菜单栏到 TUNE ---> Current Tuning 界面:

Motor resistance/Motor inductance: 电机电阻/电感,根据步进电机手册填入;

(注意:在电流环调参时,请将上页中电机参数的"Stepper Resolution"值设为 2bits)

设置抓图参数:先将"Use predefined command"勾选去掉,然后将电流频率设为 2Hz,电流设为 in-motion 电流的 5~10%之间;

Current Tuning	Current Step Command	Current Open Loop
Current command type:	3 - Square wave direct inj	ectic v Motor On
Current command frequency:	2	Hz Motor Off
Current command amplitude:	50	mA
Current command offset:	0	mA
Use predefined command		

Current Pl, gain/Current Pl, integral: 填入电流环 PI 参数(推荐值从 100、10 开始以避免增益过大电机产生啸叫声),设定好参数后,点击"Apply Current Command"开始给入电流指令,滚动鼠标滚轮并点击回车键可实时改变参数值并动态响应,调整参数的同时观察右侧图像中激励电流和响应电流(Ia/IaRef 或 Ib/IbRef),使其最大程度相吻合,点击"Disable Current Command"可停止给入电流;

◆ 位置环

切换菜单栏到 TUNE ---> PIV Tuning 界面:

在调参之前确保电流环时修改的 "Stepper Resolution" 值为用户所需的 bit 数,

将速度环参数 PI gain 和 PI integral 都设为"0",然后调整 Position 中的 Gain 值,点击 "Apply Pos Command"开始给入位置指令激励,滚动鼠标滚轮并点击回车键可实时改变参数值并动态响应,调整参数的同时观察右侧图像中位置指令(PosRef)和位置响应(Pos),使其最大程度相吻合,点击"Disable Command"可停止给入指令;

• 第4步:运动控制

完后以上设置后即可进行相应的运动控制;

2.4 特殊 PD 模式

AGD301 控制器支持一种特殊扩展 PD 模式,该模式在不占用原有的 3 个运动轴的前提下,可使用 4 路差分数字输出信号最大再扩展 2 路独立的 PD 信号用于控制步进驱动器,目前 仅支持 AGD301-ET-2D05 型号。

值得注意的是: 该特殊 PD 模式需要特殊版本固件支持,如需使用请联系 Agito-Akribis 获 取相关支持。

• 第1步:系统框图

控制器输出为±2.5V 差分脉冲方向信号,如用户端步进驱动器是单端 0/5V 单端数字信号,需要使用定制线束以适配单端信号的使用。

注:如需使用定制线束请联系 Agito-Akribis 获取相关支持

• 第2步:参数配置

切换菜单栏到 I/O --->Discrete Outputs 界面:

将对应双向差分数字口设置为 Output 模式, 扩展 1#步进轴对应 Bi-Dir_Diff_IO_1+/-、Bi-Dir_Diff_IO_2+/-, 扩展 2#步进轴对应 Bi-Dir_Diff_IO_3+/-、Bi-Dir_Diff_IO_4+/-;

Differential Bi-D	irectional			
Outputs: Logic:	18 19 □ 1#扩展轴 □ □		20 21 □ 2 #扩展轴 □	
Mode:	0 - General c 🗵	0 - General c 🗵	0 - General c 🗵	0 - General c 🗸
Applied on Axis:	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Selector:	0 - Software 🗸	0 - Software 🗸	0 - Software 🗸	0 - Software 🗸
Direction:	1 - Output 🛛 🗸	1 - Output 🛛 🗸	1 - Output v	1 - Output 🛛 🗸
HW Info:	X4 pin 1.2	X4 pin 19.20	X4 pin 3.4	X4 pin 21.22

打开 Terminal,分别将对应数字输出口的 Selector 值设置为 15(如上图,18、19 对应 1# 扩展轴,20、21 对应 2#扩展轴),设置完成后,点击菜单栏 "Save To Flash"保存参数到 控制器,并断电重启生效;

• 第3步:运动控制

扩展轴 PD 模式在 PCSuite 中无运动控制 UI 界面,只能在 IDE 编程环境中或 ACSII 通讯通过 操作 FPGA 对应寄存器中的值来进行运动控制;

寄存器	1#扩展	2#扩展	访问	Default	Description
	轴地址	轴地址	类型	Value	
脉宽	66	118	只写	50(1us)	脉宽=0.02µs*value
脉冲间隔	21	277	只写	50(1us)	脉冲间隔=0.02µs*value
目标位置:	67	119	只写	0	DSP 使用关键字:
(高位)					PDOutTrgtPos
目标位置:	68	120	只写	0	DSP 使用关键字:
(低位)					PDOutBTgtPos
当前位置:	69	123	只读	0	DSP 使用关键字:
(高位)					PDOutFBAbsPos
目标位置:	70	124	只读	0	DSP 使用关键字:
(低位)					PDOutBAbsPos
Command Reg	71	121	只写	0	值=0,空闲状态,
					值=1,为跟随模式,
					值=2,将目标位置置0;
方向延时	72	122	只写	0	Delay time=0.02µs*value
PDConfig	$23(14^{th})$	$279(14^{th})$	只写	0	值=0输出为脉冲方向形式,
Ŭ	bit)	bit)			值=1 输出为 AqB 形式;
Dir Polarity	$23(15^{th})$	$279(15^{th})$	Write	0	
	bit)	bit)	Only		
Pulse	23 (16 th	$279(16^{th})$	Write	0	
Polarity	bit)	bit)	Only		

十进制指令地址表:

以下介绍在 IDE 编程环境中控制电机运动的示例:

扩展关键字:

关键字	描述
PDOutTrgtPos	1#扩展轴写入目标位置
PDOutFBAbsPos	1#扩展轴读取当前位置
PDOutBTgtPos	2#扩展轴写入目标位置
PDOutBAbsPos	2#扩展轴读取当前位置

IDE 程序

在 FPGA 对应地址中写入值需要在 DebugData 里写入 3 次,示例程序中将该步骤封装 成一个函数(function),在使用时只要调用该函数即可将值写入 FPGA 对应地址;

以下程序实现了1#、2#扩展轴分别运动到20000的位置处:

```
main([10,30],[5,20],[800,1000])
```

```
//将1#扩展轴脉宽设为1ms (Pulse High Duration), 脉宽=0.02µs*50000=1ms;
  writeToFPGA(66,50000)
                      //将1#扩展轴脉冲间隔设为1ms (Pulse Low Duration),通常将占空比设为50%;
  writeToFPGA(21,50000)
                      //将1#扩展轴设为运动状态(跟随模式);
  writeToFPGA(71,1)
  APDOutTrgtPos = 20000
                      //设定1#扩展轴目标位置,跟随模式下给定目标位置后电机即开始运动;
AWaitTime, 1000
                     //将2#扩展轴脉宽设为1ms (Pulse High Duration);
  writeToFPGA(118,50000)
                      //将2#扩展轴脉冲间隔设为1ms (Pulse Low Duration),通常将占空比设为50%;
  writeToFPGA(277,50000)
                      //将2#扩展轴设为运动状态(跟随模式);
  writeToFPGA(121,1)
  APDOutBTgtPos = 20000
                       //设定2#扩展轴目标位置,跟随模式下给定目标位置后电机即开始运动;
```

```
endofmain
```

```
function: writeToFPGA(writeAddress, writeValue) //将FPGA值写入操作封装成函数;
   ADebugData[34]=writeAddress
   AWaitTime, 1
   ADebugData[35]=writeValue
   AWaitTime, 1
   ADebugData[33]=1
   AWaitTime, 1
endoffunc
```

以上程序中将脉宽和脉冲间隔都设为 1ms, 即将占空比设为 50%,

位置设定: PDOutTrgtPos 和 PDOutBTgtPos 分别为 1#扩展轴和 2#扩展轴的目标位置 指令。当寄存器地址为71的值被赋为1时,即开启1#扩展轴为跟随模式,此时只要 给 PDOutTrgtPos 变量写入对应目标位置值时,电机就开始运动,同样地,给 2#扩展 轴对应地址 121 赋值为1时,开启2#扩展轴为跟随模式;

速度设定:步进电机速度由控制器输出脉冲频率决定,频率 f = 1/(脉宽* 2),占空比为 50%,为确保控制精度,建议输出频率为 10KHz 以下,即脉宽 50us 以上(50us 对应 寄存器值为 2500 以上), 换算成速度为 Vel= f/subdiv, (vel 单位为 rev/s, f 单位为 Hz, subdiv 为步进驱动器细分);

值得注意的是: 该模式无置 0 命令, 即不能将当前位置置 0.

3 相关关键字介绍

Agito 关键字不仅可以在 PCSuite Terminal 终端及 IDE 编程环境使用,用户也可通过字符串或 ASCII 通讯使用,此处仅介绍与步进控制相关关键字。

关键字	描述
АтрТуре	驱动类型,
	Amplype =0 衣示 PWM 输出,
	AmpType =3 表示 PD 输出;
StepBits	步进细分位数,步进细分数=2 ^{StepBits} * PolePrs,步进细分数表示步进电机一圈对应的步数;
PolePrs	电机极对数,典型两相步距角为 1.8°步进电机的极对数为 50Pairs,
	(<i>步距角 = 360° / (2*N*P)</i> ,其中 N 为极对数, P 为电机相数);
StepInMotCurr	电机运动时的电流,即额定电流,注意为了保护电机请勿超过电机手册 中额定电流值;
StepInPosCurr	电机使能的保持电流,常见为额定电流值的 90%、50%、30%;
DOutSelect	DOutSlect[i], i 为差分输出口编号,不同控制器有区别,
	DOutSelect[i]=13 表示启用标准 PD 模式(标准固件),
	DOutSelect[i]=15 表示启用扩展 PD 模式(定制固件);
VEncSrc	虚拟编码器信号源,通常使用 PosRef;
PDOutTrgtPos	扩展特殊 PD 模式下,1#扩展轴写入目标位置(定制固件);
PDOutFBAbsPos	扩展特殊 PD 模式下,1#扩展轴读取当前位置(定制固件);
PDOutBTgtPos	扩展特殊 PD 模式下,2#扩展轴写入目标位置(定制固件);
PDOutBAbsPos	扩展特殊 PD 模式下,2#扩展轴读取当前位置(定制固件);

