
File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 1

Akribis-Agito User Program

User’s Manual

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 2

Table of contents

General 4

What is a User-Program? 4

Typical usage of User-Programs 4

System structure 4

Akribis PC Suite software 5

The User-Program language(s) 7

Multiple User-Programs 7

Multi-threading 7

Event functions 8

SUPPORTED EVENTS 10

Compiler directives 10

User-Program files 10

User variables 11

Flow control 11

Version control and information 12

Comments 12

Designed for easy expansion 12

Related communication messages 13

Expanding the controller communication language syntax 13

High level Programmer User-Program language (PUP) 18

General definitions of the PUP language syntax 18

Comments 19

Compiler directives 19

Flow control 20

Expressions, operators and math functions 21

AVAILABLE OPERATORS FOR EXPRESSIONS 22

AVAILABLE OPERATORS FOR LOGICAL EXPRESSIONS 23

OPERATORS PRECEDENCE 23

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 3

EXAMPLES FOR EXPRESSIONS AND LOGICAL EXPRESSIONS 24

Tasks and Functions 24

User program and threads execution control and monitor 25

Any message as supported over the communication channels 26

Any statement of the low level Controller User Program (CUP) 26

Low level Controller User-Program language (CUP) 27

General 27

Relationships between a PUP file and a CUP file 28

General definitions of the CUP language syntax 28

How PUP statements are implemented in CUP file 29

Comments 29

Compiler directives 29

Flow control 30

Expressions, operators and math functions 33

Tasks and Functions 37

The information table at the beginning of a CUP file 38

More about Event Functions 40

User-Program related communication messages 44

PC Suite – User-Program development environment 47

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 4

General

This file provides the description of Agito-Akribis User Program environment and language.

What is a User-Program?

The User-Program (or script) is the feature that enables the user to download a user-program to
a controller and that enables the controller to independently execute the user program upon a
proper request by the operator or upon a predefined event within the controller.

Generally speaking, the User-Program provides the ability to stand-alone operation of the
controller, without receiving command messages over the communication

Typical usage of User-Programs

Typical (and partial) usages of a user programs are:

 To execute the machine application.

 To perform homing.

 To perform safety and I/O sequences.

 To execute test scenarios by the hardware engineers.

 To execute test scenarios by the programmers or the field technicians, in the field.

 To collect data about events and processes.

 To support tests of the controller during production (Jigs).

System structure

The figure in the next page presents a system with a controller that supports User-Programs.

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 5

Akribis PC Suite software

Akribis PC Suite supports the following additional features in order to establish an environment
for the user-programs development:

 Project management:

The controller

Host
Maintenance

PC Suite

User
Program

Controller
Task 1

Or

Communication interpreter/handler

Controller
Task 2

Controller
Task N

A user program (script) that was
downloaded to the controller
and is saved in the controller

A PC Software (PC Suite) that
provides means to edit/compile/

download and debug of user
programs

The controller not only listens/
responds to the communication
channels, but, if activated, also

sequentially and periodically
executes the user program, line by

line.

Of course, if needed, the Host can also
send the required communication

commands to control and handle the
user program execution

The interpreter is expanded to
support additional commands as

required to support the user
program feature

Additional
Commands

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 6

The PC Suite can handle a user-program project (a collection of files that establish a
single program).

 Edit:

The PC Suite integrates a context sensitive editor for user programs.

 Compile:

Provide the feature to compile the user program (or better to say: project) into a low
level controller user program that can be downloaded into the controller.

The process can detect errors in the project’s files, as well as to properly display the
errors and point to their location.

The compiler also generates all needed information files for the debug process.

Note:

Debug process is a future feature and is not currently supported by the PC Suite.

 Download:

The PC Suite supports the process of downloading the controller user program to the
controller (in which it is saved into the Flash memory).

 Debug:

The PC Suite provides the means to debug the user program that is in the controller
(execute, halt, single step, breakpoints, and watch variables …). Both the high level and
the low level user (see below) programs are shown in debug mode (like C and ASM when
debugging embedded C code).

Note:

Debug process is a future feature and is not currently supported by the PC Suite.

Initially, the "User-Program" is developed (edited, compiled, downloaded, debugged …) using the
PC Suite software. Later on, it is downloaded and saved in the controller non-volatile memory
and now it can be executed upon a suitable message over the communication channels or it can
be executed upon pre-defined built in events in the controller.

The PC Suite is designed to minimize the user program development time; starting writing a new
user program till the user program is successfully executed by the controller.

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 7

The User-Program language(s)

Generally speaking, the User-Program is a script of commands identical (from the functional
point of view) to the commands available over the communication lines. It provides the ability to
perform a batch (script) of commands internally by the controller. However, in order to create a
meaningful program, the User-Program also supports additional commands, to enable: flow
control (if, while, for …), math calculations, user variables, comments, compiler directives etc.

In order to support these additional commands, the controller interpreter is expanded to
support the execution of these additional commands from the user program.

The User-Program language is divided into two languages, conceptually similarly to C and ASM.
The user develops (writes) the User-Program in the Programmer User-Program Language (*.PUP),
which is a high level language, while the controller executes a User-Program in the Controller
User-Program Language (*.CUP), which is a lower level language.

The PC software Suite is responsible (during compilation and downloading) to compile the User-
Program file that is written in Programmer User-Program Language into a User-Program file that
is written on Controller User-Program Language, which is downloaded into the controller.

The usage of the low level Controller User-Program Language enables simple (and small sized)
implementation in the controller firmware and ensures fast execution (no need for complex
interpretation of high level commands and flow structures during execution).

A User-Program in Programmer User-Program Language can just as well, and transparently,
include parts in Controller User-Program Language (just as you can embed ASM code within a C
code).

Multiple User-Programs

It is important to note that while a single User-Program is downloaded into the controller, this
User-Program can consist of many Tasks (sub-programs) and the user may select to execute any
one of them, so that actually the User-Program program may include many programs, each
performing a predefined task/process.

Multi-threading

The controller supports the execution of few (controller dependent) User-Program threads in
parallel. All threads are executed within a single User-Program (as defined above, it can include
multiple User-Program sub-programs/tasks).

Once the controller has executed a command from a given activated thread, it will execute the
next command from the next activated thread and so on, in a loop over all the activated threads.

Priority between threads is also supported, so that, for example, a given thread can be executed
at the highest rate (command each loop over all the active threads) while another thread will be
activated in a lower rate, for example: each 10 loops (actually running 10 times slower compared
to the faster thread).

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 8

Event functions

In some cases, it is required that a specific User-Program function will be executed upon a
controller internal or external event (change of a discrete input, change of internal state, value of
a sensor etc.).

A user may link between a given User-Program function and a user predefined event. In such
case, upon a trigger of this event, the User-Program execution will jump (similarly to an interrupt)
to this function, from which it will return – at the end of the function - to the same location it
was before the event.

Event functions are supported only for the main thread (thread 1) of the User-Program.

Once the User-Program is jumping into an event function, all other threads continue to run as
before. However, the user can include, in the event function, the required commands to halt the
other threads, or to modify their priority.

The following figure describes the structure of a sample user program file and threads execution,
including an event function. Note that it is a single project. However, it consists of few Tasks, and
the user/programmer can define, for each thread, at which location (Task) to execute.

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 9

Theoretically, as each thread had its own program location pointer, multiple threads can run the
same code (task). However, this is not practical in most cases.

Note that the file that is downloaded to the controller (the *.CUP – Controller User Program)
includes not only the compiled code of the high level program (the *.PUP file – Programmer User
Program), but all the additional information that may be needed by the controller in order to:
 Minimize the size of the related code at the controller.

 Maximize the execution speed of the user program at the controller.

A user program as downloaded to the controller

Main Task

The main task is is the task that is
executed as the main (1st) thread of

the user program. It can be
automatically executed at power on

or reset. In this example, it is
activating the 2nd and the 3rd

threads.

Homing function

Safety task

Test SCAP task

Additional information that is downloaded to the controller, such as:
pointers to the tasks, event functions pointers, version information etc.

Low VIN event function

Upon user request over the
communication, the Main task will
call the Homing function which will

return after completion of the
process

An event function that will be
automatically triggered upon

crossing predefined threshold of
VIN (a variable in the controller).

The event is executed as part of the
main thread.

2nd thread, continuously executing a
procedure to test and monitor the

SCAP voltage

3rd thread, monitor safety inputs
and handle responses

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 10

This additional information is prepared by the compiler in the PC Suite and is packed as part of
the *.CUP file.

Supported events

The software supports 5 (other numbers can be supported by various products and/or FW
versions) event definitions, and the user can fully define the characteristics of each of these
events, covering which controller parameter to use, a bitwise mask, trigger type (rising edge,
falling edge, equal, not equal…) and a value to look for.

This provides unique flexibility in defining the trigger for a given event function (similar to the
definition of data recording trigger).

Note that the triggering of functions upon events is performed only if the main user program
thread (Thread 1) is running. It is Thread 1 which will service the Event trigger by calling the
Event Function that is tied (linked) to it.

Compiler directives

A User-Program can include compiler directives that are handled by the User-Program compiler
to expand the functionality of the User-Program.

Examples are:

#define (similar to C, described below)
#include (similar to C, described below)
#information (described below)
#definevar (described below)

User-Program files

Note:

Currently, a user program project can consist only a single *.PUP file and multiple *.PUH files
(see description below). The *.PUP file must have the same name as the project name.

Multiple *.PUP files within a single project is a future feature.

A User-Program (actually, a project) is constructed from some program files. Each file consists of
1 (or more, although 1 is recommended) Tasks (code segments, each responsible for a given
process). A program file may include headers files for compiler directives (only), as described
below.

The following file extensions are used:

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 11

1. *.pup

Program files have a *.pup extension. PUP stands for Programmer User-Program
language.

A project may include 1 to many PUP files (each containing at least 1 Task).

2. *.puh

The *.puh extension is a header files that can be included in a *.pup file.

Only *.puh files can be included within a *.pup file.

A PUH file’s content is limited to comments and compiler’s directives.

A project may include 1 to many PUH files (each containing at least 1 Task). Only the files
that are included by the project’s PUP files are actually used in the compilation process.

3. *.cup

The output file of the compilation process has a *.cup extension. This is the file that is
downloaded to the controller. It includes the user program project converted into the
Controller User Program language (that can be executed by the controller), as well as
additional information that is used by the controller to optimally (size and speed)
execute the user program.

Other files and extensions are generated internally by the compiler to enable the compilation
and the debug processes.

User variables

Using a built-in array of general parameters (AGenData[] in Agito-Akribis's controllers), the User-
Program supports user variables naming, including arrays.

The user can define a name for a variable (together with its location within AGenData[]) and
from this point it can refer to the user variable by its name (within the User-Program).

At the moment, only integer (signed 32 bits) variables are supported. Support for floating point
variables (and math operations) will be added in the future.

Flow control

The User-Program language is equipped with a wide set of language keywords to support
complex flow control of the program.

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 12

This includes the keywords: while, if, for … as well as their related keywords such as break,
continue, etc.

See details later on within this document.

Version control and information

The User-Program language and environment support the embedding of version related
information in both the PUP and the CUP files.

This covers the name of the file, the date/time of its creation, its CRC and any additional
information that can be added by the programmer using the #information directive.

This information is available to the user by using a specific communication message that uploads
all the version related information from the controller (from the CPU file that was downloaded
to the controller).

Comments

The PUP file can include unlimited number of comments, to enhance the readability of the
program. Comments are stripped during the compilation process and the CUP file does not
include comments (or any data that is not a must for the execution of a user program), so that
the CUP file that is downloaded to the controller has minimal size.

Designed for easy expansion

The User-Program implementation in the controller (and at the PC Suite) is designed in a way
that it can be easily expanded at any time in the future. For example, it is very easy to add a
math function to the list of supported functions. However, this must be done by Agito-Akribis.

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 13

Related communication messages

Note:

Some of the functions below are future features. See below for details.

In order to use the User-Program support of the controller, as well as to enable proper
debugging of a User-Program, the controller supports the following communication messages:

 Download User-Program

 Upload User-Program (future feature)

 Execute User-Program thread (multi-threads is a future feature)

 Halt User-Program thread (multi-threads is a future feature)

 Halt all User-Program threads (multi-threads is a future feature)

 Define thread priority (multi-threads is a future feature)

 Upload version information (future feature)

 Set/remove breakpoints (future feature)

 Execute single command

 Report User-Program status per thread (future feature)

 Report User-Program run-time error per thread

 Set/Report User-Program program location per thread (future feature)

 And more … (see detailed list later on within this document).

Expanding the controller communication language syntax

This chapter describes the differences in the communication language syntax between an Agito-
Akribis controller without the user program feature and an Agito-Akribis controller that supports
user programming.

The controller communication language syntax is expanded in order to support the control,
execution and monitoring of user programs by the controller.

The additional features are:

 New keywords:

Many new keywords are added to the controller to support the user program feature. All
these new keywords are listed within this document.

For example:

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 14

ProgDownload
ProgRun
Jump
Call
Return
Math

And many more …

 Command keywords supports array indexing:

Command keyword can be now defined as arrays with given index range. In case a
command is defined as "arrayed command", it must appear with [index value] and the
index value must be in the defined range.

These tests are handled by the interpreter similarly to arrayed parameter.

If all is OK, the index value is used by the command function as defined for each specific
command.

For the user program execution related commands, it will be used (in most vases) to
indicate the addressed user program thread. In this way, we can define the number of
multiple threads supported by the controller, independently of the number of axes
supported (indicated by the first letter of a message).

For example:

ProgHalt[2] means to halt the execution of user program thread 2

Similarly, for some of the Function keywords (like Jump, Math), the index of the array
will be used to define the operation of the function.

For example:

Math[1] performs Addition.
Math[2] performs multiplication
Math[30] performs Sin()
Jump[1], location jumps unconditionally to the location
Jump[2], location jumps to location only if the value in stack is positive.

Parameters that refer to threads will also use array indexing, but here there is nothing
new in the communication language structure.

For example:

ProgStat[3] inquires the status of user program thread 3

 Command keywords now support optional argument:

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 15

In addition (and independently) to the above, Command keywords can now (optionally)
receive a numeric argument, such as:

ProgRun[1], 2 means to run user program thread 1 from the start point of Task 2.

Each command has a built-in definition (in the controller) if it can accept an argument
and what is the range of the argument.

If it can’t, and an argument is provided, it is an error.
If it can accept an argument, the argument is a must.

If all is Ok, the argument value is provided to the function that uses this information as
defined for each specific command.

As shown above, the user program related command keywords will use this argument
feature to indicate, for example, a Task number, or a Function number.

The Return function, for example, uses this argument feature to optionally return a value
from a function.

 Additional attributes:

Additional attributes shall be added for each keyword, such as:

(Some of the keywords that are used for following examples are new keywords that
are defined later within this document).

Not allowed over the communication lines (for example: "Jump", "Math")
Not allowed from a user program (for example "DownloadFW", "ProgDownload")
Not allowed when there is no user program in the controller (for example:
"ProgRun")
And more …

 Additional error codes:

Additional error codes were added to the interpreter, such as:

No user program in the controller.
User program is running.
Specified user program thread is already running.
Specified user program thread is not running.
Command argument has wrong format

 Command argument out of range
Command does not support argument
And more …

 Implied references to user program thread:

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 16

Some of the new keywords that relate to use program control and monitoring are
defined as arrays, to provide access to each specific user program thread. These are
mainly the messages that are expected over the communication channels, such as:

ProgRun[ThreadNumber],
ProgHalt[ThreadNumber],
ProgStat[ThreadNumber].

These keywords can be used also within a user program, but they must have thread
number indication as the array index, to indicate to which thread they refer.

However, many of the new keywords (mostly those that refer to calculation of
expressions and flow control, such as: Jump, Compare, Call, Return, Math, PushParam…)
are not defined as arrays (or defined, but for other reasons) and they include no
reference to a given thread. Why?

These keywords have implied reference to a thread. They are part of a user program
code and when executed, they are executed as part of a given thread. As a result,
naturally they refer to the thread that is executing them! (it can be different thread
number at different times).

When thread 3, for example, is executed, and it reaches the following message (for
example):

AMath[…]

As explained above, the axis letter is ignored (but must be a valid letter for the
controller). Clearly, the "Math" function shall perform the math operation over the
expressions stack (defined in details below) of thread number 3, although this is not
specifically indicated.

If the same message will be reached by, for example, thread 1, it shall "Math" the values
from the expressions stack of thread1.

And what if such a message (like Math) is used over one of the communication lines?

In such cases, the controller is using an extra thread, that is not normally accessible as
part of a user program. Accessing such keywords over the communication is meaningless
beside for training and debugging.

 Source of an executed message is a user-program:

Until now, a message can have one of the following sources: RS-232 port, CAN port (with
indication of the mailbox) or internal.

The controller response to the input message is a function of the source of the message.
For RS-232 and/or CAN, the response message is sent to the same communication
channel from which the message arrived. In parallel, ErrLog[] is updated in case of any
error.

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 17

For internal source, no response is sent and the ErrLog[] is updated in case of errors.

Now the controller supports an additional source for a message: The user program (with
indication of the thread). In this case, no response message is sent, the relevant
expressions stack may be updated and the ProgError is used to report run-time errors,
which are also reported at the ErrLog[].

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 18

High level Programmer User-Program language (PUP)

Users write user-programs using the Programmer User-Program (PUP) language.

This language consists of the following groups of language statements:

 Comments.

 Compiler directives.

 Flow control.

 Expressions, operators and math functions.

 Tasks and Functions.

 User program and threads execution control and monitor.

 Any standard message as supported over the communication channels.

 Any statement of the low level Controller User Program (CUP, see below).

The sections below list the available language statements for each of these groups, as well as
their format/syntax (briefly).

Some general definitions of the PUP language are first required:

General definitions of the PUP language syntax

The following are general definitions for the PUP language:

 Tabs are ignored.

 Blanks at the beginning of each line are ignored.

 Multiple blanks within a line are considered as a single blank.

 Single blanks are used only as separators between tokens.

 Empty lines are ignored.

 End of line can be one of: CR+LF, or LF, or CR.

 The language is case sensitive.

 Each line may contain no more than one statement (which can be appended with a
comment at the end of the line).

 A statement must be contained within one line (no continuations of lines).

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 19

Comments

The following table presents the means to include comments within the user program:

Statement Description

// …. At the beginning of a line indicates that this line is a comment
and is ignored by the compiler

…. // … Within a line it means that the rest of the line is a comment and
is ignored by the compiler

Compiler directives

The following table presents the supported compiler directives:

Statement Description

#include FileName
#include “FileName”

The content of the file FileName is inserted as it is
instead of the #include directive.

FileName can be of type *.puh only.

FileName can include a path. If path is not
provided, the compiler will look for it at the same
directory where the user program file is located.

#define String1 String2
Following this directive, whenever the compiler
encounters String1 within a given line, it will
replace it by String2 before compiling this line

#definevar VariableName AGenData[N]

Following this directive, the VariableName string
can be used as a name of a variable. AGenData[N]
will be used as a place holder for this variable
(integer). N shall be a number within the range of
the GenData[] array in the controller.

#definevar ArrayName[ArraySize]
GenData[N]

As above, but this statement defines an array.
AGenData[N] till AGenData[N+ArraySize-1] will be
used as place holders for the array.

Arrays are indexed starting at Index of 1.

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 20

Statement Description

#information AnyString

All the AnyStrings of all the #information
directives are downloaded to the controller with
the compiled program. The user can then
request, over the communication, to read these
strings.

It can be used by the programmer to inform the
user about the version of the program, about its
status, about the status of a given function within
the program etc.

#event EventID FunctionName

(Note: this directive is a future feature)

Links a given function to one of the events that
are supported by the controller (identified by the
value of EventID).

Only one function can be linked to any given
EventID.

Directives can be located at any anywhere in the user program.

Flow control

The following table presents the language statements that enable program flow control:

Statement Description

if (LogicalExpression)
else if (LogicalExpression)
else
end

Similar to the C language "if"
statement.

while (LogicalExpression)
continue
break
end

Similar to the C language "while"
statement.

for (InitialExpression, LogicalExpression, LoopExpression)
continue
break
end

Similar to the C language "for"
statement.

switch(Expression)
case value
break
default
end

Similar to the C language "switch"
statement.

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 21

Statement Description
(note: switch is a future feature)

GoTo, TaskNumber

(note: GoTo is a future feature)

The user program location
pointer will be updated to the
location of the first statement
within the specified Task.

This statement shall be used only
when must, as using jumps is not
recommended in structural
programing.

ProgFuncCall, FunctionNumber
Return

Calls a function. Upon "Return"
from that function, the execution
will continue at the next
statement.

Where relevant, nesting of flow control statements is supported up to controller dependent
depth for each statement type.

See below definitions of Expression and LogicalExpression, as well as for TaskNumber and
FunctionNumber.

Expressions, operators and math functions

The following table presents how the PUP language supports expressions, operators and built-in
math functions:

Statement Description

MathFunctionName (Expression1, Expression2, …)

MathFunctionName can be one of:
log, log10, exp, sin, cos, tan, asin, acos,
atan, atan2, power, abs, sqrt
And the list can be easily expanded as
may be required.
Each function has a number of required
input arguments and the statement must
include this number of input arguments.
For trigonometric functions, angles and
fractional returned values are
represented in a controller dependent
way.

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 22

Statement Description

Expression

Any combination of operands (variables
or Expressions by themselves) and
operators.

See below list of available operators.

LogicalExpression

Any combination of operands (variables
or expressions or Logical Expressions) and
logical operators.

See below list of available logical
operators.

Variable = Expression
Variable = LogicalExpression

Assignment to a variable.

Variable can be any user defined variable
(see #definevar above) or any parameter
of the controller.

Numbers (constants)

Numbers are in decimal format by
default.

0x indicates number in HEX format

0b indicates number in binary format

Leading zeros (after the 0x,0b) are
ignored.

(Note: Ox and 0b formats are future
feature)

Available operators for expressions

The following is a list of supported operators:

 Parentheses: ()

 Multiply, divide and module: * / %

 Add and subtract: + -

 Bitwise AND: &

 Bitwise OR and XOR | ^

 Shift left and right (arithmetic): << >> (note: future feature)

Also supported are the following unary operators (act on a single operand):

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 23

 Negate: - (if located in the left side of a single operand)

 Bitwise NOT (complement): ~

Available operators for logical expressions

The following is a list of supported logical operators:

 Brackets: ()

 Logical AND: && (similar implementation to C)

 Logical OR: || (similar implementation to C)

 Comparisons: < > <= >= == !=

Also supported are the following unary logical operators (act on a single operand):

 Logical NOT: ! (if located in the left side of a single operand)

Operators precedence

The operators within an expression and/or a logical expression will be executed according to the
following precedence (starting from the highest precedence). Operators that appear under the
same bullet have identical precedence and will be executed from left to write (within the
expression):

 ()

 !, - (unary)

 *, /, %

 +, -

 <<,>>

 <, >, <=, >=

 ==, !=

 &

 ^

 |

 &&

 ||

 = (assignment)

In case of complex expressions, we strongly recommend using brackets to enforce the desired
precedence of the expression evaluation. This will have no effect on the expression execution
time at the controller.

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 24

Examples for Expressions and Logical Expressions

Variable1 = Variable2 * 35 + Variable3

ASpeed = AAInPort * AAInFactor + AAInOffset

If ((ADinPort & DigitalInputsMask) == 0x0034)

Tasks and Functions

The following table presents the language statements that relate to tasks and functions.

Note that Tasks and Functions can be included only within a PUP file. The resulted conclusion is
that a PUH file may include only comments and/or compiler’s directives (non-executable
statements).

Task is a segment of code that you can execute (by the ProgRun keyword for example). The
program does not return from a Task (it can be executed for ever in a loop, or be halted after
some time) and you can’t Call() a Task. Functions, on the other hand, are to be Call()’ed and must
be Return’ed. However, Functions cannot be executed in any other but calling them (from within
another function of a task).

A function can be an Event Function and in such case, if Thread 1 is running (main thread) and if
the event is triggered, the user program engine will automatically call this function (like an
interrupt).

Statement Description

AProgTask[TaskNumber]

And typically at the end of the
task:

AProgHalt[TaskNumber]

A definition of the starting point of a program segment (or
module) that generally performs a given task (like: Homing).
The TaskNumber is limited to a value that is controller
dependent. This line is not an executable line and just indicates
the location of the Task (which is the first executable line
following this line.

A task is executed using:
AProgRun[ThreadNumber], TaskNumber

Good programming practice is to place one task within each
PUP file and to name the PUP file at least similarly (if not
identically) to the task.

Task must be followed by a AProgHalt[] so that the controller
will not continue to execute the next lines of code. AProgHalt[]
can be avoided only if the task is an endless while()

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 25

Statement Description

AProgFunc[FunctionNumber],
EventNumber

Return or AReturn

A definition of the starting point of a program segment (or
module) that is a function that shall be called to perform a
specific functionality. Upon completion, the program execution
continues at the next line following the call to the function.

If EventNumber is 0 (or omitted at all), this is a normal function
that is not tied to an event. If EventNumber is not 0 (and within
the range of number of supported events), this function is tied
to this event and it will be automatically called when the event
is triggered. A function that is tied to an event can be also
called normally.

It is not allowed to tie more than one function to a given
EventNumber.

The FunctionNumber is limited to a value that is controller
dependent. This line is not an executable line and just indicates
the location of the Function (which is the first executable line
following this line.

A function is called using:
AProgFuncCall, FunctionNumber

A function must include at least one “Return” statement.

When returning from a function that was called as an event
function, this event will be flagged as it is ready again for
triggering.

Practically, a function shall not include an endless loop.

Function that return a value.

(Note: this is a future feature)

TBD

User program and threads execution control and monitor

All the statements that control the user program execution and the threads execution are
available also as communication messages to the controller (as these activities shall not only be
available from the user program, but also by the user over the communication lines).

As a result, please refer to the Chapter "User-Program related communication messages" later
on within this document for the detailed list of these statements.

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 26

Any message as supported over the communication channels

As the user program is actually a way to define a script of communication messages to be
executed internally (and autonomously) by the controller, clearly any message that is supported
over the communication lines (ASCII syntax) is a basic statement within the user program.

For example:

ASpeed = 100000
AmotionMode = 2
ABegin

Note that a simple assignment statement (constant numeric value assignment) is considered as a
built-in message to the controller and is not compiled. However, once the assignment is more
complex (right side is not a constant numeric value), the compiler will treat the statement as an
expression and will compile it accordingly (convert it into the low level Controller User Program
language).

Any statement of the low level Controller User Program (CUP)

Statements of the low level Controller User Program language (CUP, see below) can be used as a
statement within a Programmer User Program.

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 27

Low level Controller User-Program language (CUP)

General

The PC Suite compiles the user program as written by the programmer (in high level Program
User Program – PUP – language) into a low level Controller User program – CUP – language,
which is later on, upon successful compilation, downloaded to the controller.

The PC Suite’s compiler collect and convert the full set of PUP and PUH files that are included
within the compiled project, to create a single CUP file that can be download to and executed by
the controller.

The CUP file includes the PUP user program, converted to the CUP language, and some
additional information as will be described later on within this chapter.

Practically, most of the executable statements within a PUP files are not modified at all and are
copied as is (or almost as is) to the CUP file.

For example:

A section of a PUP file:

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 28

Is converted to the following section of CUP file (comments are removed, definitions are
replaced and spaces are removed):

(For now, please ignore the header of the file, it will be later explained)
This looks just like a batch of messages over the communication line.

However, some parts of a PUP file (flow control, expressions …) must be converted into lower
level set of keywords, as supported by the controller language. This is described in details later
within this chapter.

Relationships between a PUP file and a CUP file

The PC Suite, during compilation of a project (a set of PUP and PUH files), creates a table with
relevant information at the beginning of the CUP file. This information can be used by the
controller to properly access the various parts of the program, as well as to hold information
regarding this program.

Such linkage is required for:

 Line numbers (program location pointer).

 Tasks and functions location.

 Range of low level program that relate to any given high level statement.

 Comments.

 Definitions and variable naming.

 And similarly.

General definitions of the CUP language syntax

The following are general definitions for the CUP language:

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 29

 A CUP file starts with a table of information as created by the PC Suite during

compilation. See details later on within this chapter.

 The rest of the file contains the CUP program, according to the following syntax rules:

 No tabs are allowed.

 No blanks are allowed (except in some cases as part of the CUP file header, see
below).

 No empty lines.

 End of line will be always CR.

 Case sensitivity: Preferably using first letter of each word capital, such as:
AProgRun (from the controller point of view, there is no case sensitivity).

How PUP statements are implemented in CUP file

The following sections describe the relevant controller language keywords that are used to
handle each group of the high level statements.

Please note that these keywords are accessible only from a user program (trying to send one of
these low level keywords over the communication with result with an error).

Comments

Comments are not copied from a PUP file to a CUP file. A CUP file contains no comments.

This is to minimize the size of a CUP file, as it is downloaded to the controller, where FLASH
memory size is "expensive".

Compiler directives

The following table presents the implementation of the compiler directives at the CUP file:

Statement Description

#include FileName Handled by the PC Suite. Not included within a
CUP file.

#define String1 String2 As above

#definevar VariableName GenData[N] As above

#define ArrayName[ArraySize] GenData[N] As above

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 30

Statement Description

#information AnyString

The compiler creates a table with all the
"AnyString"'s and include it in the table of
information that it creates at the beginning of the
CUP file. Spaces are allowed in the CUP file only
as part of these strings.

A dedicated controller message (ProgInfo, see
next chapter) can be used to inquire this list of
strings over the communication lines.

Clearly, the #information line is not included as-is
in the CUP file.

#event EventID FunctionName

(note: this directive is a future feature)

The compiler creates a table of pointers (to
functions in the CUP file) for the supported
events and includes it in the table of information
that it creates at the beginning of the CUP file.

This table is read by the controller upon
successful download process and is used for
proper execution of the event triggering when a
user program is executed.

Clearly, the #event line is not included as-is in the
CUP file.

Flow control

The flow control statements (at the PUP file) are complex statements that are replaced by a
sequence of low level commands (at the CUP file).

The following controller keywords are used by the compiler to implement the PUP flow control
statements in CUP language.

Note the usage of the notation "Expressions Stack" in the following table. The meaning of this
stack will be explained in detailed within the next section.

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 31

Note:

The table below shows a list of keywords, like: JumpEQ, JumpGT, CompareNZ and so on.
Actually, the controller supports only two basic keywords: Jump and Compare.

A typical Jump message looks like:

AJump[3], 4567

The value of 3 represents the type of jump to perform (unconditional, EQ, NZ, GE, GT, …).

The same is applicable for Compare.

Please refer to the Communication Keywords Reference Manual for detailed list of Jump types
and Compare types (under the dedicated page for each of these keywords).

Keyword Description

Jump, DestinationPointer Change the program location pointer to be equal to the
DestinationPointer

JumpEQ, DestinationPointer
As above, but only if the 2nd and the 1st elements in the
Expressions Stack are equal. Remove these two
elements from the stack.

JumpGT, DestinationPointer As above, but only if the 2nd element is greater than 1st
element

JumpGE, DestinationPointer As above, but greater than or equal to

JumpLT, DestinationPointer As above, but less than

JumpLE, DestinationPointer As above, but less than or equal to

JumpNE, DestinationPointer As above, but not equal

JumpZ, DestinationPointer As above, but only of the 1st element is zero. Remove
this element from the stack.

JumpNZ, DestinationPointer As above, but only if it is not zero

CompareEQ
Compare the 2nd and the 1st elements in the Expression
Stack and replace both of them with 1 if they are equal
or 0 if they are not equal.

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 32

Keyword Description

CompareGT As above, but greater than.

CompareGE As above, but greater than or equal to

CompareLT As above, but less than

CompareLE As above, but less than or equal to

CompareNE As above, but not equal

CompareZ As above, but only the 1st element is compared to zero

CompareNZ As above, but only if not equal to zero

ProgFuncCall, FunctionPointer

Calls to a function.

Push the location pointer of the next executable
message in the CUP program into the Calls Stack and
change the program location pointer to be equal to the
FunctionPointer

Return

Return with a return value will be also
supported in the future.

Returns from a function.

Push the ReturnValue to the Expressions Stack and
Jump back to the call location by popping a location
pointer from the Calls Stack

WaitStatus[StatusType],StatusValue

Waits for a specified status (StatusType) to become
true, using also the StatusValue.

Can be to wait for end of motion, or a value of a user
flag, etc.

Refer to the Communication Keywords Reference
Manual for detailed list of the supported status types
(under the dedicated page for the WaitStatus keyword).

GetStatus[StatusType]

(note: this keyword will be supported
in the future)

Gets the value of a specified status (StatusType). It is a
read-only parameter keyword.

StatusType is equivalent to the types used by
WaitStatus, see above.

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 33

In addition to these controller keywords, the compiler needs also to handle the Expressions and
LogicalExpressions that are included within the flow control statements. Refer to the next
section for details about the implementations of these expressions in CUP language.

The above controller keywords are optimally used (considering execution speed at the controller)
to create CUP code that will replace all the following PUP flow control statements:

If, while, for, call and their related statements: else if, else, continue, break …

Expressions, operators and math functions

Expressions are complex statements of the PUP language. The controller, using its CUP language
does not support expressions but only unary and binary operators. As a result, the PC Suite
compiler, translate any expression into a set of calculations that can be written in CUP language.

Using this method, the controller interpreter is kept simple, small and fast and the user program
execution speed is optimal (the controller shall not evaluate and interpret complex expressions,
precedence etc.).

In order to support the implementation of expressions, the CUP language supports an
Expressions Stack, dedicated keywords to push/pop to/from this stack and a set of keywords to
cover all required operators, as listed below.

Implementation of any expressions is converted to a set of push operations, operators and pop
operation for the assignment.

An example may be the best way to show this method:

Assume the following expression in a PUP language:

ASpeed = AAInPort * 100 + (AGenData[200] + 100) / 30

It will be converted into the following set of CUP messages (expression stack content shown in
brackets):

 (Empty)
PushParam, AAInPort (AAInPort value)
APushConstant, 100 (100, AAInPort value)
AMath[MULTIPLY] (AAInPort*100)
APushParam, AGenData[200] (AGenData[200], AAInPort*100)
APushConstant, 100 (100, AGenData[200], AAInPort*100)
AMath[ADD] (AGenData[200]+100, AAInPort*100)
APushConstant, 30 (30, AGenData[200]+100, AAInPort*100)
AMath[DIVIDE] ((AGenData[200]+100)/30, AAInPort*100)
AMath[ADD] (AAInPort*100+(AGenData[200]+100)/30)
APopParam, ASpeed (Empty)

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 34

At the end of this sequence of low level messages, ASpeed gets the desired value of the
expression.

Note that PushParam is a new keyword that gets the “name” of a parameter keyword and
pushes its current value to the expressions stack and PopParam means to pop a value from the
expressions stack into the specified parameter.

Note that the actual CUP file language does not support a name of a parameter as a part of the
message. It actually contains a numeric value that points to this parameter. This numeric value is
automatically calculated by the PC Suite compiler. Please contact Agito-Akribis in case you are
interested in a detailed description about how this numeric value is calculated.

The expressions stack is always kept balanced and is usually empty. Of course, the controller
checks and generate errors if trying to push into a full expressions stack or trying to pop from an
empty stack, or if the expressions stack has not enough elements for a given operator or
keyword. Such error will halt the user program and will set a status of run-time error.

The Expressions Stack has a depth of 50 elements (per each program thread). This shall enable
very complex expressions. Of course, the stack is cleared upon downloading of a new user
program or upon resetting the user program.

Note – Order of items in the expression stack:

The 1st element in the stack is defined as the 1st one to be popped (last pushed element), 2nd
element is the 2nd one to be popped and so on. This means that the notation "1st" refers to the
latest pushed item, which is the first item to be popped out (LIFO – Last In, First Out stack).

Example:

Starting with an empty stack (Empty)
APushConstant, 100 (100)

 100 is now the 1st element in the stack

APushConstant, 200 (200, 100)
 200 is now the 1st element in the stack
 100 is now the 2nd element in the stack

APushConstant, 300 (300, 200, 100)
 300 is now the 1st element in the stack
 200 is now the 2nd element in the stack
 100 is now the 3rd element in the stack

When reading the stack (using ProgExpStack[] keyword), the value of 300 will be found at
location 1, and the value of 200 will be found at location 2 and so on.

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 35

When popping values from the stack (using the PopParam keyword, or implicitly using Math or
Jump) the 1st element in the stack will be popped first. After the 1st element has been popped
out, the 2nd element becomes the 1st, and so on…

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 36

The following controller keywords are used by the compiler to implement expressions, logical
expressions and math functions:

Keyword Description

PushParam, <Complex CAN Code>

Push the current value of the parameter which is
pointed by the “Complex CAN Code”, into the
expression stack.

Error is created if the stack is full.

PushConstant, <number> Push the constant value into the expressions stack1

PopParam, <Complex CAN Code> Pop a value from the expression stack and assign it to
the parameter2

Math[LOG3] Pop a value from the expressions stack, perform
log(value) to this value and push the result to the stack

Math[LOG10] As above but Log10(value)

Math[EXP] As above but evalue

Math[SIN] As above but sin(value)4

Math[COS] cos(value)

Math[TAN] tan(value)

Math[ASIN] asin((value)

Math[ACOS] acos(value)

Math[ATAN] atan(value)

Math[ATAN2]
Takes two values from the expressions stack, performs
atan2(2nd value, 1st value) and push the result to the
stack

Math[POWER] As above, but performs (2nd value)(1st value)

Math[ABS] abs(value)

Math[SQRT] sqrt(value)

1 Of course, error is created if the stack is full.
2 Of course, just as for communication message, an error will be created if the assignment is not
allowed (read only parameter, not allowed during motion, value out of range etc.). And, of course, also
if the stack is empty.
3 LOG (as LOG10 and others below) indicates a constant value. The PUP file can even use #define to
indeed use LOG and not a numeric value. Refer to the dedicated page of the Math keywords, at the
Communication Keywords Reference Manual for a detailed list of the supported Math types.
4 All trigonometric functions assume angles in radians

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 37

Keyword Description

Math[MULTIPLY] Takes two values from the expressions stack, multiply
them and push the result to the stack

Math[DIVIDE] As above, but: (2nd value) / (1st value)

Math[MODULO] As above, but modulo

Math[ADD] As above, but add the two values

Math[SUBTRACT] As above, but subtract

Math[NEGATE] Pop a value from the expressions stack, negate it and
push it back

Math[BITWISE_AND]
Takes two values from the expressions stack, perform
bitwise AND between them and push the result to the
stack

Math[BITWISE_OR] As above, but bitwise OR

Math[BITWISE_XOR] As above, but bitwise XOR

Math[BITWISE_NOT] Pop a value from the expressions stack, bitwise NOT it
and push it back

Math[LOGICAL_AND]
Takes two values from the expressions stack, perform
logical AND between them and push the result (0 or 1)
to the stack

Math[LOGICAL_OR] As above, but logical OR

Math[LOGICAL_NOT] As above, but logical NOT

In addition, the implementation of logical expressions uses the comparison keywords as listed in
the previous section.

Using the above defined controller keywords, as well as the expressions stack; the compiler can
generate code in CUP language for any complex expression or logical expression in PUP language,
while taking care for the calculation precedence.

Tasks and Functions

In order to support calls for functions and returning from a function, the controller supports the
following keywords, which were already listed above as part of the flow control section:

ProgCallFunc, FunctionNumber
Return

A function is defined using the:

ProgFunc[FunctionNumber], EventNumber (0 for normal function, or:

avoid the ", EventNumber")

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 38

Statement.

Tasks are defined using the:

ProgTask[TaskNumber]

Keyword, and are executed using the keyword:

ProgRun[ThreadNumber], TaskNumber

The information table at the beginning of a CUP file

The PC Suite compiler generates a CUP file that is downloaded to the controller. The CUP file
includes two sections.

The first section is an area where the compiler place tables of information as may be required by
the controller to optimally perform the user program execution and related operations.

The second section is the user program itself, in CUP language.

This section lists the contents of the first section of a CUP file (please address Agito-Akribis in
case that a more detailed description is required):

 CRC value for the overall file.

 Date of download.

 Name of the download CUP file at the PC (can include spaces).

 Pointer to the table of information data.

 Pointer to the table of Tasks and functions (maybe two separated tables and two
separated pointers, as Tasks and Functions are not to be handled the same (Tasks can be
executed, Functions can be only called). Actually, we need only table of Tasks!!!

 Pointer to the table of events assignments to functions.

 Pointer to the first character of the user program.

 Pointer to the last character of the user program (also the length of the CUP file).

 A table holding all the strings defined by the programmer using the #information
compiler directive. This table is uploaded over the communication (together with the
listed above CRC, date of download and file name), as a response to the ProgInfo
command keyword.

 A table listing all the Tasks as defined in the PUP files, and pointer, for each Task, into the
relevant location in the CUP file.

 A table which lists type of events and the function that is related to this event.

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 39

Note that the overall size of a CUP file (the information section and the program itself) is limited
by the size of the FLASH sector(s) that is allocated at the specific controller for the user program.

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 40

More about Event Functions

Some clarifications and additional information about Event Functions handling:

 If Event Function is triggered while Thread 1 is running but is handling a Wait message

(such as: WaitTime), the Event Function will be called (immediately) and when
completed, the Wait message will be re-executed (WaitTime, for example, will start
waiting the whole specified wait time).

 The controller supports up to 5 events (EventNumber = 1 to 5). Event number 1 is a fast
event, as defined below, while events 2 to 5 are normal events.

Note: different number of events can be supported depending on the product and the
FW version.

 Fast event: The detection of the event trigger itself is performed each control interrupt,
meaning at resolution of 61 micro seconds.

 Normal event: The detection of the event trigger itself is performed within the control
interrupt, but with a resolution of 1msec.

 If multiple threads are executed (and assuming Thread 1 is one of them), the respond to
a detected event trigger is performed only when the user program execution engine
reaches the execution of Thread 1. This may create some additional delay if many
threads are running together.

 The ProgEventType defines the type of the trigger and supports the following values:

ProgEventType value Type of trigger

1 Greater than (>)

2 Equal (==)

3 Not equal (!=)

4 Less than (<)

5 Rising edge

6 Falling edge

7 Manual Not supported. Will not generate a
trigger.

8 On change

 The "On Change" triggering type is an interesting mode. The trigger is detected when the

value of the trigger parameter is different from its initial value. The initial value is
updated upon few cases as listed below. One of them is upon returning from servicing

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 41

this event. This mean that it can be used for re-servicing the event whenever the trigger
parameter is being changed…

 Few events can use the same value at ProgEventPar, meaning to be triggered using the
same controller parameter (with the same or different trigger type, value and mask).

 Understanding the internal logic of event triggering is a must to properly control and
predict the servicing of the event functions. The following items and table present this
internal logic:

 The Built-in logic holds the following variables, per each event (not directly

accessible by the user):

ProgEventParInitialVal
ProgEventParPrevVal

 ProgEventParInitialVal holds the initial value of the trigger parameter and is used
for the "On Change" trigger type.

 ProgEventParPrevVal holds the previous value of the trigger parameter and is
used for the "Rising Edge" and "Falling Edge" trigger types.

 The following table shows when these variables are updated.

Upon.. Internal logic

Power On or Reset

ProgEventOn is 0
ProgEventGEn is 0
ProgEventEn is 0 for all events
ProgEventStat is 0 for all events

ProgEventPar, ProgEventType, ProgEventMask and
ProgEventVal are loaded from the Flash, for all
events.

ProgEventParInitialVal and ProgEventParPrevVal are
set to the current value of the event trigger
parameter, per each event.

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 42

Load from Flash

ProgEventPar, ProgEventType, ProgEventMask and
ProgEventVal are loaded from the Flash, for all
events.

ProgEventParInitialVal and ProgEventParPrevVal are
set to the current value of the event trigger
parameter, per each event.

ProgEventOn, ProgEventGEn, ProgEventEn (for all
events) and ProgEventStat (for all events) remain
unchanged.

Download User Program

ProgEventOn, ProgEventGEn, ProgEventEn (for all
events) and ProgEventStat (for all events) are set to
0.

All other parameters and internal variables remain
unchanged.

Reset All Threads

ProgEventOn, ProgEventGEn, ProgEventEn (for all
events) and ProgEventStat (for all events) are set to
0.

All other parameters and internal variables remain
unchanged.

Reset Thread 1

ProgEventOn, ProgEventGEn, ProgEventEn (for all
events) and ProgEventStat (for all events) are set to
0.

All other parameters and internal variables remain
unchanged.

Reset any Thread except thread 1 Nothing

Start servicing an event The ProgEventStat of this event is set to 2 ("in
service" and blocking triggering of this event).

Return from servicing an event

The ProgEventStat of this event is set to 0 ("waiting
for trigger").

ProgEventParInitialVal and ProgEventParPrevVal are
set to the current value of the event trigger
parameter, for this event.

Upon checking for trigger detection at
the control interrupt (once per 61µs per
event 1 and 1ms per events 2-5)

ProgEventParPrevVal is set to the current value of
the event trigger parameter, for this event, after
checking for the trigger condition.

Assigning a value to:
ProgEventPar[EventNumber]

ProgEventParInitialVal and ProgEventParPrevVal are
set to the current value of the event trigger
parameter, for this event.

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 43

Assigning a value to:
ProgEventMask[EventNumber]

Nothing.

However, if using the "On Change" event trigger
mode, it is recommended to (re-)assign the value to
ProgEventPar[EventNumber] after assigning a value
to ProgEventMask[EventNumber] to ensure proper
initialization of all internal variables.

Assigning a value to:
ProgEventType[EventNumber] Nothing

Assigning a value to:
ProgEventVal[EventNumber] Nothing

Assigning a value to:
ProgEventEn[EventNumber] Nothing

Assigning a 0 value to:
ProgEventStat[EventNumber] Nothing

Assigning a value to: ProgEventGEn Nothing

Assigning a 0 value to: ProgEventOn

Events are not sensed and are not handled since
now ProgEventOn is 0.

The ProgEventStat is set to 0 ("waiting for trigger")
for all events to clear all possibly pending events.

Assigning a 1 value to: ProgEventOn

Nothing.

However, if using one of the "On Change", "Rising
Edge" or "Falling Edge" event trigger modes, it is
recommended to (re-)assign the value to
ProgEventPar[EventNumber] before Setting
ProgEventOn=1, to ensure proper initialization of all
internal variables.

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 44

User-Program related communication messages

To control and monitor the execution of user program threads, the set of communication
messages (keywords) was expanded to support the following user program related messages
(keywords).

Note that all these communication messages, just as any communication message, can be
included as part of a user program. This means that from within a given thread of a user program,
it is possible to control the execution of other threads (run, halt, get status and set priority …).

The following table presents the list of keywords that relate to user program control and
monitoring:

Keyword Description

ProgRun[ThreadNumber],
TaskNumber

Start/Continue program execution.

If TaskNumber is equal to 0, the program execution
continues from its current location.
If TaskNumber is equal to -1, the program execution
starts from the first line of the program.
Otherwise, the program execution starts from the
requested task.

ProgHalt[ThreadNumber] Halt program execution of the specified thread

ProgHaltAll Halt all the currently active user program threads

ProgPointer[ThreadNumber]
(at the moment, it is a Read Only
parameter)

Inquire current value of the program location pointer of
the specified thread. Value of 0 is the beginning point of
the program.

ProgSingle[ThreadNumber], Type

Execute single program command at the specified
thread.

If Type == 0, the controller will execute the current line
once and may stay at this line if it is a “Wait” line and the
wait condition is not yet satisfied. If Type is not equal to
zero, to controller will continue to execute the current
line till it will move to the next (or any other) line (Step
Over).

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 45

Keyword Description

ProgBreaks[index] = Location
Index = 1, 2 or 3

Set a break point at ProgPointer=Location. Any thread
that will reach this location will halt.

Up to three break points are supported. The software
checks from index=1 to 3. If a Location with a value of -1
is found, the checking stops.

So the PC Suite must organize all break points from index
= 1

ProgStat[ThreadNumber]

Inquires the status of the specified program thread:

-1: No user program in the controller
0: Not running
1: Running

ProgError[ThreadNumber] Inquires the last run-time error of the specified program
thread

ProgClrExp[ThreadNumber] Clears the expressions stack of the specified thread

ProgExpStack[ThreadNumber],
Location

Inquires the program expressions stack of the specified
thread, at the given location

ProgExpDepth[ThreadNumber] Inquires the empty spaces at the program expressions
stack of the specified thread

ProgClrCall[ThreadNumber] Clears the calls stack of the specified thread

ProgCallStack[ThreadNumber],
Location

Inquires the program calls stack of the specified thread,
at the given location

ProgCallDepth[ThreadNumber] Inquires the empty spaces at the program calls stack of
the specified thread

ProgResetAll Halt all user program threads and resets all its pointers
and statuses

ProgEventOn

Activate ("1") or disables ("0") the handling of user
program events. When disabled ("0") all pending events
are cleared and events are not handled/processed at all.
This includes also the sensing of events.

ProgEventPar[EventNumber]

Defines (using Complex CAN Code) which controller
parameter to use for the triggering of this event. If
ProgEventPar[EventNumber] is set to 0 (or to a non-valid
Complex CAN code), this event will not be sensed and
will not be handled.

ProgEventMask[EventNumber]
Defines a bitwise mask to apply on the user defined
event trigger parameter. The mask is also applied on the
trigger value.

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 46

Keyword Description

ProgEventType[EventNumber]

Defines the type of the trigger (rising edge, equal, not
equal…). Note that the four parameters to define a
trigger for an event are very like the definition of a
trigger for data recording.

ProgEventVal[EventNumber] Define the value to be used for the trigger detection.

ProgEventEn[EventNumber]

Enables ("1") or disables ("0") the servicing of this event.
ProgEventEn, when "0", does not disable the sensing of
the event, and the event can still be sensed and possibly
pending, to be serviced when enabled.

ProgEventStat[EventNumber]

Reports the state of this event. "0" for waiting for
trigger, "1" for pending for service (triggered) and "2" for
in service. Note that this mean that while a given event is
being serviced, it can't not be triggered again, till
servicing is completed (returning from the event
function using the Return keyword).
This parameter is R/W, so user can clear a pending event
– only the value of 0 can be written to this parameter).

ProgEventGEn

Globally enables ("1") or disables ("0") the servicing of all
events. ProgEventGEn, when "0", does not disable the
sensing of events, and events are still sensed and
possibly pending, to be serviced when enabled.

ProgPriority[ThreadNumber]=Priority
Sets/Inquires the priority of the specified program
thread. Priority value is 1 to 10, where 1 is the highest
priority.

ProgInfo???

(note: this is a future feature)

Inquires the list of information strings that are included
with the user program: CRC value, Date, CUP File name
and the text information (see the "#information"
compiler directive)

DownloadUPBin Used to download a new user program to the controller

UploadUProg

(note: this is a future feature)

Used to upload the user program from the controller

Note that all the references in the above table to program location (ProgPointer, ProgBreaks)
and the reference to single program command (ProgSingle) refer to the low-level Controller User
Program language as saved in the controller. It is the PC Suite responsibility (using the debug
information that it creates during the compilation process) to link between these low-level
pointers to the high level pointers (Tasks, function names, high level program statement) as may
be referred by the user.

File name: Akribis-Agito User Program Language Manual(0706)
Date: Sunday, July 7, 2018(JZ)
Version: 2.5
Written by: Eyal Sapir
Pages: 47

 Page 47

PC Suite – User-Program development environment

Refer to the PC Suite User’s Manual.

	General
	What is a User-Program?
	Typical usage of User-Programs
	System structure
	Akribis PC Suite software
	The User-Program language(s)
	Multiple User-Programs
	Multi-threading
	Event functions
	Supported events

	Compiler directives
	User-Program files
	User variables
	Flow control
	Version control and information
	Comments
	Designed for easy expansion
	Related communication messages
	Expanding the controller communication language syntax

	High level Programmer User-Program language (PUP)
	General definitions of the PUP language syntax
	Comments
	Compiler directives
	Flow control
	Expressions, operators and math functions
	Available operators for expressions
	Available operators for logical expressions
	Operators precedence
	Examples for Expressions and Logical Expressions

	Tasks and Functions
	User program and threads execution control and monitor
	Any message as supported over the communication channels
	Any statement of the low level Controller User Program (CUP)

	Low level Controller User-Program language (CUP)
	General
	Relationships between a PUP file and a CUP file
	General definitions of the CUP language syntax
	How PUP statements are implemented in CUP file
	Comments
	Compiler directives
	Flow control
	Expressions, operators and math functions
	Tasks and Functions
	The information table at the beginning of a CUP file

	More about Event Functions
	User-Program related communication messages
	PC Suite – User-Program development environment

